Intel Microcontroller Unlock/Code Extraction

Intel MCU reverse engineer list:

87xx series mcu code extraction:

8741 8741AH 8742 8742AH 8744 8744H 8748 8748H 8749 8749H 8751 8751BH 8751H 8751H-8 87551SB 8752BH 8796BH 8796JF 8797BH 8797JF 8798 ...

87Cxx series mcu code extraction:

87C151SA 87C151SB 87C194 87C196CA 87C196JQ 87C196JR 87C196JT 87C196JV 87C196KB 87C196KC 87C196KD 87C196KQ 87C196KR 87C196KS 87C196KT 87C196LA 87C196MC 87C196MH 87C198 87C251SA 87C251SB 87C251SP 87C251SQ 87C42 87C51 87C51FA 87C51FB 87C51FC 87C51GB 87C51RA 87C51RB 87C51RC 87C52 87C54 87C58 D87C51 D87C151SA D87C151SB D87C194 D87C198 D87C251SA D87C251SP D87C251SQ D87C196CA D87C42 D87C51FA D87C51FB D87C51FC D87C251SB D87C51RA D87C196JQ D87C196JR D87C196JT D87C196JV D87C196KR D87C196KS D87C196KT D87C196LA D87C51RB D87C51RC D87C52 D87C54 D87C51GB D87C58 D87L42 D87L51FA D87L51FB D8751BH D87L51FC D87L52 D87L54 8749 D87L58 D8741 D8741AH D8742 DD8749H D8742AH D8744 D8744H D8748 D8751 8D748H D8751H D8751H-8 D8752BH D8798 D8796BH D8796JF D8797BH D8797JF D87C196MC D87C196MH D87C251SA...

87Lxx series Microprocessor code retreive:

87L42 87L51FA 87L51FB 87L51FC 87L52 87L54 87L58 ...

Please visit the MCU brands link below to see the IC list, however, it is quite impossible to list all the part numbers YourLogo can unlock here, and YourLogo is always researching new types of microcontrollers, but may not be able to update them here, if you do not find your chip type here, please contact us.

About Intel:

Intel Corporation (commonly known as Intel and stylized as Intel) is an American multinational corporation and technology company headquartered in Santa Clara, California, in Silicon Valley. It is the world's second-largest and second-most-valued semiconductor chip manufacturer by revenue, overtaken by Samsung Electronics, and the inventor of the x86 series of microprocessors, processors found in most personal computers (PCs). . Intel ranks 46th on the 2018 Fortune 500 Largest United States Corporations list by total revenue. Intel is included in Delaware.

Intel was an early developer of SRAM and DRAM memory chips, representing most of its business until 1981. Although Intel created the world's first commercial microprocessor chip in 1971, it was not until personal computers (PCs) became a success. Its primary occupation.

During the 1990s, Intel invested heavily in new microprocessor designs to promote the rapid growth of the computer industry. During this period, Intel became the major supplier of microprocessors for PCs and was known for aggressive and anti-competitive tactics in defending its market position, particularly against Advanced Micro Devices (AMD), as well as on direction. Conflict with Microsoft for control. Of PC industry.

Intel’s current operating segments include Client Computing Group, Data Center Group, Internet of Things Group, Non-Volatile Memory Solutions Group, Intel Security Group and Programmable Solutions Group.

Giant industry leaders like Dell, Lenovo and HP Inc are the top customers of Intel.

They have invested their skills to produce products like SRAMS and the microprocessor, From DRAM to microprocessors, Intel, x86 processors, and the IBM PC, 386 microprocessor, 486, Pentium, and Itanium, Pentium flaw, Remote Keyboard Android App, Solid-state drives (SSD), Supercomputers, Mobile Linux software, Car Security System, High-Bandwidth Digital Content Protection, Fog computing and self driving cars.

Product and market history

SRAMS and the microprocessor

Intel's first products were shift register memory and random-access memory integrated circuits, and Intel grew to be a leader in the fiercely competitive DRAM, SRAM, and ROM markets throughout the 1970s. Concurrently, Intel engineers Marcian Hoff, Federico Faggin, Stanley Mazor and Masatoshi Shima invented Intel's first microprocessor. Originally developed for the Japanese company Busicom to replace a number of ASICs in a calculator already produced by Busicom, the Intel 4004 was introduced to the mass market on November 15, 1971, though the microprocessor did not become the core of Intel's business until the mid-1980s. (Note: Intel is usually given credit with Texas Instruments for the almost-simultaneous invention of the microprocessor)

From DRAM to microprocessors

In 1983, at the dawn of the personal computer era, Intel's profits came under increased pressure from Japanese memory-chip manufacturers, and then-president Andy Grove focused the company on microprocessors. Grove described this transition in the book Only the Paranoid Survive. A key element of his plan was the notion, then considered radical, of becoming the single source for successors to the popular 8086 microprocessor.

Until then, the manufacture of complex integrated circuits was not reliable enough for customers to depend on a single supplier, but Grove began producing processors in three geographically distinct factories,[which?] and ceased licensing the chip designs to competitors such as Zilog and AMD.[citation needed] When the PC industry boomed in the late 1980s and 1990s, Intel was one of the primary beneficiaries.

Intel, x86 processors, and the IBM PC

Despite the ultimate importance of the microprocessor, the 4004 and its successors the 8008 and the 8080 were never major revenue contributors at Intel. As the next processor, the 8086 (and its variant the 8088) was completed in 1978, Intel embarked on a major marketing and sales campaign for that chip nicknamed "Operation Crush", and intended to win as many customers for the processor as possible. One design win was the newly created IBM PC division, though the importance of this was not fully realized at the time.

386 microprocessor

During this period Andrew Grove dramatically redirected the company, closing much of its DRAM business and directing resources to the microprocessor business. Of perhaps greater importance was his decision to "single-source" the 386 microprocessor. Prior to this, microprocessor manufacturing was in its infancy, and manufacturing problems frequently reduced or stopped production, interrupting supplies to customers. To mitigate this risk, these customers typically insisted that multiple manufacturers produce chips they could use to ensure a consistent supply. The 8080 and 8086-series microprocessors were produced by several companies, notably AMD, with which Intel had a technology-sharing contract. Grove made the decision not to license the 386 design to other manufacturers, instead, producing it in three geographically distinct factories: Santa Clara, California; Hillsboro, Oregon; and Chandler, a suburb of Phoenix, Arizona. He convinced customers that this would ensure consistent delivery. In doing this, Intel breached its contract with AMD, which sued and was paid millions of dollars in damages but could not manufacture new Intel CPU designs any longer. (Instead, AMD started to develop and manufacture its own competing x86 designs.) As the success of Compaq's Deskpro 386 established the 386 as the dominant CPU choice, Intel achieved a position of near-exclusive dominance as its supplier. Profits from this funded rapid development of both higher-performance chip designs and higher-performance manufacturing capabilities, propelling Intel to a position of unquestioned leadership by the early 1990s.

486, Pentium, and Itanium

Intel introduced the 486 microprocessor in 1989, and in 1990 established a second design team, designing the processors code-named "P5" and "P6" in parallel and committing to a major new processor every two years, versus the four or more years such designs had previously taken. Engineers Vinod Dham and Rajeev Chandrasekhar (Member of Parliament, India) were key figures on the core team that invented the 486 chip and later, Intel's signature Pentium chip. The P5 project was earlier known as "Operation Bicycle," referring to the cycles of the processor through two parallel execution pipelines. The P5 was introduced in 1993 as the Intel Pentium, substituting a registered trademark name for the former part number (numbers, such as 486, cannot be legally registered as trademarks in the United States). The P6 followed in 1995 as the Pentium Pro and improved into the Pentium II in 1997. New architectures were developed alternately in Santa Clara, California and Hillsboro, Oregon.

Pentium flaw

In June 1994, Intel engineers discovered a flaw in the floating-point math subsection of the P5 Pentium microprocessor. Under certain data-dependent conditions, the low-order bits of the result of a floating-point division would be incorrect. The error could compound in subsequent calculations. Intel corrected the error in a future chip revision, and under public pressure it issued a total recall and replaced the defective Pentium CPUs (which were limited to some 60, 66, 75, 90, and 100 MHz models) on customer request.

The bug was discovered independently in October 1994 by Thomas Nicely, Professor of Mathematics at Lynchburg College. He contacted Intel but received no response. On October 30, he posted a message about his finding on the Internet. Word of the bug spread quickly and reached the industry press. The bug was easy to replicate; a user could enter specific numbers into the calculator on the operating system. Consequently, many users did not accept Intel's statements that the error was minor and "not even an erratum." During Thanksgiving, in 1994, The New York Times ran a piece by journalist John Markoff spotlighting the error. Intel changed its position and offered to replace every chip, quickly putting in place a large end-user support organization. This resulted in a $475 million charge against Intel's 1994 revenue. Dr. Nicely later learned that Intel had discovered the FDIV bug in its own testing a few months before him (but had decided not to inform customers).

Remote Keyboard Android App

Intel has decided to discontinue with their recent Intel Remote Keyboard Android app after encountering several security bugs. This app was launched in early 2015 to help users control Intel single-board computers and Intel NUC. The company has asked Remote Keyboard Users to delete the app at their first convenience.

Solid-state drives (SSD)

In 2008, Intel began shipping mainstream solid-state drives (SSDs) with up to 160 GB storage capacities. As with their CPUs, Intel develops SSD chips using ever-smaller nanometer processes. These SSDs make use of industry standards such as NAND flash, mSATA, PCIe, and NVMe. In 2017, Intel introduced SSDs based on 3D XPoint technology under the Optane brand name.


The Intel Scientific Computers division was founded in 1984 by Justin Rattner, to design and produce parallel computers based on Intel microprocessors connected in hypercube internetwork topology. In 1992, the name was changed to the Intel Supercomputing Systems Division, and development of the iWarp architecture was also subsumed. The division designed several supercomputer systems, including the Intel iPSC/1, iPSC/2, iPSC/860, Paragon and ASCI Red. In November 2014, Intel revealed that it is going to use light beams to speed up supercomputers.

How New Prajapati Electronics Will Help you:

With over years of experience our expert team will help with reverse engineering service to clients around the world.

Reverse Engineering for Intel Microcontroller:

With the process of reverse engineering, we will discover the technological principles of Intel MCU through analysis of its structure, function and operation. And we ensure you to make a new program that does the same thing without using or simply duplicating (without understanding) any part of the original.

Intel MCU Crack or MCU Hack:

With our MCU Crack or MCU Hack service through specific equipment and methods, you will directly get encrypted microcontroller program files for Intel Microcontroller, you can copy the program chip or disassemble their reference research.

Intel Microcontroller Clone or Microncontroller Copy:

As a leading MCU Clone service provider, we will help you with your any requirement for Intel MCU clone. Discuss your microcontroller cloning requirement with us and get your work done.

Intel Microcontroller unlock:

We ate New Prajapati Electronics have come a long way as a MCU unlock service providers across the world having a formidable reputation within the industry.

Intel Microcontroller decryption:

With MCU decryption (attack) for Intel MCU, we will directly get encrypted programming document of MCU by certain equipment and method, which could provide for learning, reference and study after copying programming chip or disassembling. After decryption, we could guarantee that the chip sample we offered has the same function with the master chip offered by client, obtain programming document to offer for client.

Intel Microcontroller Dumping:

We will transfer the coded program from the compiler (where compiler is a software where we can write, analyze, test and debug the coded program for Intel microcontroller.) to the microcontroller memory. The coding or program written for microcontroller is generally in assembly/C language and the compiler generates a hex file which is understandable by the microcontroller. The hex file contains special instructions which are to be transferred to the microcontroller memory and then it works according to the given instruction and program.

Intel Chip Code Extraction:

Our team of experienced engineers will help you with chip code extraction for Intel Microcontrollers. Get in touch with us your requirement and get your work done.